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Introduction

A spectral estimator referred to as the G-spectral estimator was intro-

duced by Gray [4] and by Gray and Foster [5]. It was then studied in some

detail by Gray, Houston and Morgan [6]. The estimator was based upon an

approximate G n-transform (see Gray, Houston and Morgan) of the sample auto-

correlation function and is equivalent to an en-transformation [11] of the

same function.

Gray, Houston and Morgan (GHM) noted the estimator to have some useful

properties but noted some shortcomings as well. In particular it required

- . more autocorrelation values than seemed necessary and included no satis-

factory way of selecting the proper value n in the en-transform. GHM

went on to conclude that an ARMA spectral estimator would probably have

better properties than the G-spectral estimator which they had studied.

In this paper, we wish to give a modified definition of the G-spectral

estimator which will be seen to avoid the difficulties noted by GHM, and

will in fact, be shown to be equivalent to a method of moments ARMA spectral

estimator.

Definitions and Theorems

The e -transformation has a rich history and has been studied in de-n

tail in numerous places (see for instance Shanks [11] and Wynn (12], and

for its application to complex sequences McWilliams [9]). We define the

en -transform formally as follows. For ---

Definition 1. Let (f } be a sequence of complex numbers defined for 'd
md

i tio . . .

m = -k, -k+l,

and let Distribution/
Availability Codes
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m

F f..
Fm j=-k J

We then define for m > n-k-i, n > I

F m-n+l F m-n+2 " m+l

e (Fm) f S-n+i f m-n+2 " +l fm-n+ f m-n+2 fm+l

fm fm+l " "fm+n fm fm~l f m~n

whenever the indicated division is defined. Otherwise, en (Fm) = en-l (F m 1).

We define e0(FM) = FM.

When considering ARMA processes, a natural class of sequences to con-

sider is the class of sequences eventually satisfying a linear homogeneous

difference equation with constant coefficients. For ease of reference, we

make the following definition.

Definition 2. Let {f.} be a sequence of complex numbers. We say {f.j is

an element of L(n,s,A) if n is the smallest whole number for which there

exists an integer I and complex numbers *l...,'n, such that f - oif j1-- ..

*nf.jn=0 for all j > Z. We then take s to be the infimum of all such L.

If f =0 for j > s and fs 0 0 then we say {f.) is an element of L(O,s,A).

thenFor k finite, it is well-known that if {f.) is an element of L(n,s,A),

j -- k

if and only if all of the solutions to the algebraic equation (called the

characteristic equation)

2 n*(r) 1 @r -
2 r ..... rn 0

i
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are strictly outside the unit circle.

Assuming only that E fj < - numerous results are available giving
j=-k 3

sufficient conditions for en (Fm) to speed up the rate of convergence of {Fm}.

In particular the following exactness result is well-known.

Theorem 1. If {f } is an element of L(n,s,A) and all of the roots of *(r)

'I are outside the unit circle, then

!~~~ e(F m = f
n~ fJ=-k

for all m > s, provided k is finite and e n(F ) is defined (i.e., provided

m > n-k-1).

Proof. The proof for {f } a real sequence is given in GHM and the proof for

{fro a complex sequence follows in the same manner.

Noting that for a wide-sense stationary real stochastic process, the

spectral density can be expressed as

S(w) = 1 + 2 i p(j) cos(2wwj),

j=1

Gray was led to consider applying the en-transformation to the sequence

(f I defined by

{ f1,m= 0
£m 2p(m) cos(2?rwm), m > 1.()

If {X(t)} is an ARMA (p,q) process, {p(m)} is an element of L(p,q,A)

from which it follows that {p(m) cos(27rwm)} is an element of.L(p+ n(w),

q'(A) where 0 < n(w) _< p. Thus, if one knows (or has estimated) the

order of the process {X(t)}, it is natural to replace o(m) in (1) by p(m)

and then to perform an e -transform on the sequence thus obtained.

The result of this procedure is the GHM version of the G-spectral estimator.



4

When the G-spectral estimator was originally proposed, there was no

adequate method available for choosing the order (p,q) of the process.

That, in conjunction with the fact that the order of the difference equation

satisfied by the sequence given in (1) changes with frequency, necessitated

that essentially a different model be chosen at every frequency. This made

the procedure extremely cumbersome to implement and also required additional

smoothing of the resulting estimate. Furthermore since n(w) is typically

equal to p, a larger number of autocorrelations was required in the estimate

than seemed necessary.

Gray, Kelley and McIntire [7] proposed a method for determining (p,q)

based upon the so-called R- and S-arrays. This procedure makes the order

selection procedure tractable. The procedure, which is unambiguous if the

true autocorrelation function is known, has been shown to be robust to

stochastic disturbance. In addition, other methods for determining (pq)

have been proposed such as AIC (1] or BIC [2]. However., in this paper we

will make use only of the Gray, Kelley, McIntire method.

For those readers unfamiliar with the method, the theoretical S-array

is given in Table 1 for an ARMA (p,q) process. The procedure then consists

of choosing p and q so that the sample S-array best matches the theoretical

pattern.

As an alternative to the sequence given in (1) it now appears more

sensible to use the sequence

fm - exp(2wiwm) o(m) , m = -k, -k+l,..., (2)

where k is chosen to be positive and larger than p-q-2. In that case, {fm I

will be an element of L(p,q,A) for all frequencies. From Theorem 1, taking

{fa as in (2), it is immediate that if p(m) is the autocorrelation function



of an ARMA (pq) process and (f n is given by (2), then

tpeca = il-kma j for all mq> .

Thus the spectral density s(w) is given by

s(w) = 2 Real (e (F )-F 0 + 1 for all m > q, (3)

where =I .

jpm 0

wh re m the iscusio given above, the following modified definition of

the G-spectral estimator should appear natural.

Definition 3. Let s(w) be the spectral density of a wide-sense stationary

stochastic process and p(i) an estimate of its autocorrelation function.

The order (n,m) G-spectral estimator is then defined as

G (w)2 = mReal e (F -F) i1n,m nM) 0

where

v

F1, I exp(2iriwj) p(j*), v -k-=,.
4j =-k

and

k > max (0, n-m- 2) .

We will show below that the modified G-spectral estimator given in

Definition 3 is equivalent to an ARMA spectral estimator. To facilitate

the discussion we make the following definition.

Definition 4. Let p(j) be the sample autocorrelation estimator for p(j)
and let I1' n be the solution to the equations

P(m l) - 1P(m) .. .+ *P p(m-n+l)

(4)

p ) * * *
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Then let m... be the solution to the equations

wP() = P(1; tI ... to ), L = 1 .... m (5)

where

P(2; €1..... n' 2 lp .... ler)

is the autocorrelation function of the ARMA (n,m) process with parameters

n and 01,...6m. For uniqueness, we require that the solution to

(5) be such that the resulting ARMA process is invertible (i.e., the roots

of 8(r) = 1-81 r-e2 r
2 . qrq = 0 are outside the unit circle). We then

call the spectral density of the above estimated ARMA process

Sn,M(w) = Z exp(2wiwj) p(j; 1 . 'n' M). '8 re

a 1I (exp(27iw)) 2
a 2 !0(exp(2wiw)I 2

the order (n,m) method of moments ARMA spectral density estimator.

In the above definition it was tacitly assumed that a solution to (4)

and (5) exists which corresponds to a stationary ARMA (n,m) process. How-

ever, for m > 0, even if p(j) is positive definite, that need not be the

case. The solution to (4) may have a characteristic equation with roots

inside the unit circle and there may exist no solution to (5) at all. In

that case, we say that the method of moments spectral estimator is undefined.

The relationship between the two spectral estimators is as follows.

Theorem 2. Let G (w) and s (w) be as defined above and suppose that
n ,m n,m

S (mw) exists. Then

G n (W)s 3 ~(w).
Gn,m( "Sn,mum
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That is G (uw) is an ARMA spectral estimator which avoids the computationnm

of the moving average parameter estimates.

Proof. It is immediate from the definition that

P) = P(.; i'. ... .. M) i. I 1,... m+n.

Further {P(Z; 011 .... ; # ^0...,m is an element of L(n,m,A). The result

then follows from equation (3).

The above theorem also provides an alternative means of calculating

the method of moments parameter estimates utilizing the so-called inverse

autocorrelations introduced by Cleveland [3]. In particular we have the

following easily proved result.

Theorem 3. Let *l* ~and G (w) be as defined above andThere 5.Le I.... n'el .. 'm Gn,m~m

suppose that s n,m() exists. Then if

- - .5

ci(k) = f .cos(2rik) d. , (6)
0 G n,m(w)

A

1,...8 m are the solutions to

ci(n+l) ici(n) +-'' e mci(n-m+l)

: (7)
ci(n~m) = 81ci(n+m-1) +-.-+ 9 ci(n).

The above procedure for calculating el' ... m provides a better

numerical procedure than the usual non-linear scheme (where (6) is approxi-

mated by Simpson's Rule for instance). The solution to (7) is unique and

ensures that an invertible solution will be obtained. Further details

will appear in a later paper by Morton.

Since the spectral estimator in Definition 3 is an ARMA spectral

estimator, when the latter exists the former is non-negative. However,
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since G (w) may exist when s n() does not, it need not always bern,m n,m

non-negative. It is, in that case, natural to consider shifting the

estimator upward or truncating it from below. Two methods for shifting

the estimator upward are contained in the following theorem. Their relative

merits are unclear, but the second estimator seems more intuitively appealing.

The second estimator has the additional virtue of providing initial "estimates"

(using Theorem 3 on the "shifted" spectrum) for 1 .... e m when no solution

to the equations in (5) exists.

Theorem 4. Let Gn(w) and l1 . n be as defined above and let C and C

be constants (possibly depending on the data) such that

(a) SM(w) = kl(Gnm(W) + CI) > 0

(b) s = k2(Gn,m{w) + C2 /,(e 2 iu)I 2 ) > 0

where
21riw vi 27riwO~e = 1 n e .

and k and k are chosen such that

*.5, *5.S2^

f 5 lwd = f s 2(w)dw =1.-. 5 -. 5

Then sI(w) is the spectral density of an ARMA(n, 1) process where

1. . max(n,m) and s2(w) is the spectral density of an ARMA(n, 2) process

where 12 < m.

Proof. It is straightforward to show that

m a e2 1iwj
j=m

Gn,mM ; e) 21 2
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where the a. are real and a = a.. Thus sl(w) is of the form

~b.e 27iw
SJ=' > 0

e2vfiwn 2

z I _ 2 7i wj
and the result follows since b b.e can then be factored. (See Hannan

-j=_-1J
[8] p. 14). The result for s2( ) follows similarly.

As a final point, we make the observation that the autoregressive

parameters need not be calculated in order to calculate the G-spectral

estimator. The calculation can be made using the so-called e-algorithm

introduced by Wynn [12]. However, the calculated coefficients themselves

provide meaningful information and more importantly offer a more efficient

method for calculating the G-spectral estimator using the following result.

Theorem S. Let ol'" . on be as given in Definition 4 and let

i
fj = P(j) exp(21riwj), Fj = f,

aj = *. exp(21riwj).

Then
F -a F -"-±F

Gn,m(w) = 2 Real +1 I m n m-n+l -F + 1..(

f n

Proof. By elementary column operations, we have that

Fm~ - F- F
Ml 1 m n m-n+l

e.(FM) = 1-

and the result follows.

As a more compact formula, we may let sj - F +F0 1/2 and (8)

becomes

G n,m(w) a 2 Real am~l s m "'n s m-nl.

C1 -I  .. . n[sm+Vlsm
i . .. . . .. . .
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If f is the number of frequencies at which the spectrum is calculated,

2
the method using the c-algorithm requires roughly Sfn operations while the

method using (8) requires roughly n /3 operations. Taking f = 100, for

instance, the break-even point is just less than n = 1300, a much higher

order autoregressive operator than is ever used in practice.

Examples

In this section, the performance of the spectral estimator introduced

in Definition 3 is investigated on several simulated data sets. For compa-

rison purposes, an autoregressive spectral estimate and a Parzen window

spectral estimate are also calculated. The order of the autoregressive

operator to be used in the autoregressive estimator is chosen according to

the minimum FPE criterion of Akaike [1]. The window spectral estimator will

be calculated using 15% of the sample autocorrelations.

Example 1. The first example we consider is a realization of length 200

from the MA(3) process

Xt = at -.9a t_1 + .81a - .729at-3

The true log spectral density for the above process is given in Figure 1.

The first 10 sample autocorrelations are given in Table 2, and the

process is identified rather easily as a third order moving average process.

The G0,3 (w) spectral estimate (which here simply reduces to the finite3 ̂
Fourier transform 1 + 2 1 p(j)cos(21tj)) is given in Figure 2.

j=i
The minimum FPE criterion chooses a ninth order autoregressive model

for this data set. The estimated AR(9) spectral density is given in Figure

3. The numerous false peaks shown there is typical for an autoregressive

fit to a moving average spectral density, especially near the non-invertible
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region.

The Parzen window spectral estimate using 30 autocorrelations is given

in Figure 4 and is somewhat similar to the autoregressive spectral estimate.

Example 2. We now consider a realization of length 400 from the ARMA(2,4)

process

Xt - 1.38Xt 1 + .64Xt-2 = at + .95at_ 1 + .9at-2 + .86at-3 + .81at-4

The true spectral density for the above process is given in Figure 5.

The sample S-array for this series is given in Table 3, and the correct

order is easily identified. The G2 4 (w) spectral estimate is shown in

Figure 6.

The FPE criterion chooses an AR(9) model. The corresponding auto-

regressive spectral estimate is shown in Figure 7. We note that the inter-

mediate hump shows through only very poorly.

In Figure 8, the Parzen window spectral estimate using 60 autocorrela-

tions is given. It also does not show the intermediate hump as clearly as

the G2,4 (w) estimate and gives a false peak for w slightly larger than .4.

Example 3. This example illustrates some of the robustness properties of

the spectral estimator being investigated. The example is a realization of

length 30 from the signal-plus-noise model

Xt = /2 cos(.27t + + at

where {at) is a variance 1 white noise random sequence and i U(0,21r).

The true spectrum is shown in Figure 9, where the spike indicates a

Dirac delta function.

The sample S-array is given in Table 4. A second order auto-

regressive operator appears to be called for, but it is unclear which

order moving average operator is most appropriate. A moving average
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order of 1 and 3 both give negative spectral estimates. The G2,2(w)

estimate is given in Figure 10. The peak is rather clearly shown

and the estimate is quite flat off the peak.

FPE was minimized for this example using an AR(S) model. The 5th

order autoregressive spectrum is given in Figure 11. This estimate also

gives good resolution of the peak, however, it is not as flat off the peak

as the G2 2 (w) estimate.

Finally we show the Parzen window spectral estimate using 5 auto-

correlations. The bias of the window estimator for short data sets is

apparent as there is no indication of a peak at all.

Example 4. Our last example illustrates what we feel is an important point.

Namely, that when filtering is necessary to identify the complete model,

the spectrum should be estimated in a "piecewise" manner as we illustrate

below.

The example is a realization of length 300 from the ARMA(2,4) process

X- 1.65X + 9X ' a + .9a + .81a + .73a + .66at_ This

model is similar to that of Example 2 except that the roots of the charac-

teristic equaticn are nearer to the unit circle and the moving average

operator is further from the non-invertibility region. The true spectral

density is shown in Figure 13.

The sample S-array is given in Table S. The near constancy in the

second column of the S-array indicates a second order near non-stationarity

(see Gray, Kelley and McIntire [7]). The estimated transformation to

stationarity (from the sample Yule-Walker equations adjusted for frequency)

is (1 - 1.68B + .94B 2).

The first 10 autocorrelations of the transformed series are given in
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Table 6. The residual series is then identified very easily as an MA(4)

process and the series is thus modeled as an ARMA(2,4) process.

The G2,4(w) spectral estimate is given in Figure 14. The estimate

is rather disappointing in that it shows no hump at the intermediate

frequencies. The reason for that, recalling Theorem 2, is that the method

of moments estimate for the moving average parameters here is quite poor

(see Table 7). For comparison purposes, we calculated the maximum likeli-

hood estimate for the parameters (see Table 8). That estimate is a consi-

derable improvement over the method of moments estimate as is the accom-

panying spectral estimate (see Figure 1S).

Actually, the direct calculation of G2,4 (w) is not what we would have

recommended from the start. That is, in view of the Findley-Quinn theorem

(see [10)) it is clear that the estimate for the moving average coeffi-

cients must be poor if one is sufficiently close to the non-stationary

region. The domination of the autoregressive operator near the non-

stationary region is clearly demonstrated in GKM [7]. The whole problem

can easily be avoided by transforming to stationarity, i.e., prefiltering.

The approach we now investigate as an alternative to obtaining the maximum

likelihood estimate is similar to the pre-filtering procedure of Tukey.

First estimate the second-order autoregressive operator from the Yule-

Walker equations associated with an ARMA (2,4) model. The estimated

2
operator is 1 - 1.65B + .91B . Then transform by the estimated operator

and estimate the spectrum of the residual series by the G0,4 (w) estimate.

The resulting spectral estimate is then s(w) given by

-2
s(w) = KIl-1.65 exp(27riw) + .91 exp(4niw)I GO, 4 (),

0,
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where K is chosen so that

.5

f S(w)dw = 1.

The spectral estimate using the above procedure is given in Figure

16. It compares favorably with the maximum likelihood estimate and is

1
actually slightly better in an L sense for this particular example. It

is also far easier to calculate than the maximum likelihood estimate.

FPE is minimized using a Sth order autoregressive operator. That

spectral estimate is given in Figure 17. It appears similar to the initial

G,(w) estimate, showing no hump at the intermediate frequency (using the
2,'4

maximum likelihood estimate for this model shows no real improvement).

Finally, the Parzen window spectral estimate using 45 autocorrelations

is given in Figure 18. The estimate is similar to the autoregressive

estimate, but does not resolve the peak quite as well.

Summary and Discussion

In this paper we have defined a modified vqrsion of the so-called G-

spectral estimator introduced by Gray [5]. We showed that the modified

G-spectral estimator is an extension of a method of moments ARMA spectral

estimator. Moreover when this method of moments ARMA spectral estimator

exists, the G-spectral estimator is equivalent and does not require

calculation of the moving average parameters.

We feel that the primary virtues of this spectral estimation procedure

are the inherent flexibility of the ARMA model over the AR model and

the spectral estimator's computational simplicity. The G-spectral

estimator presented here furnishes a closed form expression for the

method of moments ARMA(p,q) a spectral estimator, even though no closed

form solution exists for the method of moments estimate of the moving

average parameters. This is important from a theoretical and a
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practical perspective and is currently being exploited by the authors

in a number of areas.

The primary difficulty of the procedure is that the method of moments

estimate of the moving average parameters is often not very good. That

difficulty can frequently be mitigated however, by the prefiltering

procedure described in Example 4.

':1
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TABLE 1

p p 1 p 2

-q-3 C(2  U U

-q-? C2  U U

-q-1 s 1(f q-)1 C2  _

-q S (fq) s p(fq) Sp+ (f q) SD+2(f ).

-0 _s1 f.0) . Sp ( ) Spsl(f 0) S p+2f 0)

I Sl fO1)  Sp ( o) Sp+l(f o1)  s p.2 fO1
4 sl(f 1  sp(f 1)  Sp+i(f) Sp2( 1

q-1 Sl (fq I  sp C.q I  Sp+l(fql 1 sp 2 (fq1)..ql .

q sl(fq) C C C1

q+l C1  U U

'1

Theoretical S-Array for ARMA(p,q) process'.

mo
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TAB LE 2

1 2 3 4S

- .71 .48 -.24 .01 -.04

6 7 8 9 10

.01 -.05 .01 .00 -.02

1st 10 sample autocorrelations for Example 1.1
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TABLE 3

S1 S2 53 S4 $5

-8 .47 .41 -.29 .02 -.46

-7 .05 .41 -.71 .45 -.59

-6 -.35 .41 -.21 -11.24 4.22

-5 -1.16 .41 +. 16.44 -7.86 -5.64

-4 9.79 .3S .12 -.08 .03

-3 .94 .28 .09 .06 .64

-2 .37 .23 .06 -.68 .88

-1 .10 .20 .23 -.46 2.19

0 -.09 .18 -.10 .08 -.08

1 -.27 .19 -.04 .06 -.13

2 -.48 .21 -.06 .03 .46

3 -.91 .25 -.07 -.So 15

4 -7.13 .29 -.28 .28 -.28

5 .53 .29 .31 .67 .78

6 -.04 .29 -.68 1.29 -.06

7 -.32 .29 .74 .02 -.67

Sample S-Array for Example 2

*Constancy from these points on implies ARMA(2,4)
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TABLE 4

Si S2 S3 S4 S5 S6

-7 1.722 .372 -.296 .838 -2.538 1.293

-6 .299 .399 -1.179 1.094 .030 -.850

-S -.144 .375 -1.049 5.823 .838 -1.191

-4 -.544 .350 -.755 -.505 -7.376 6.851

-3 -1.720 .426 -1.059 4.628 -7.046 25.049

-2 2.167 .243 -2.025 -2.669 -S.507 -17.620

-1 .448 .933 -1.443 2.892 -3.858 6.868

4 0 -.309 .462 .680 .890 -1.157 1.391

1 -.684 .240 -.446 .289 -.610 .500

2 -2.389 .393 -.509 .905 -.656 .841

3 1.192 .304 -.698 .225 -.605 -21.266

4 .169 .375 -.562 .646 -1.628 .226

S -.230 .361 -.530 -12.943 -.067 4.528

6 -.633 .351 1.011 2.485 -4.366 4.26S

Sample S-array for Example 3 f = (m)

mi
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TABLE 5

Si S2 53 S4

-7 -1.972 3.98S -13.810 29.307

-6 -1.721 3.992 .907 -2.805

-5 -1.321 3.986 2.555 -20.639

-4 .641 3.991 -17.473 20.799

-3 -3.566 3.989 -9.7S7 16.537

-2 -2.444 3.958 -7.687 -49.474

-1 -2.115 3.912 -20.561 -20.285

0 -1.897 3.684 -4.487 3.675

1 -1.692 3.634 -7.399 S.227

2 -1.390 3.589 -6.039 11.284

3 -.380 3.570 -4.626 8.715

4 -4.119 3.570 -1.393 .754

5 -2.387 3.567 -.661 7.425

6 -2.029 3.572 -5.024 4.873

Sample S-array for Example 6 f ~m

."nib
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TABLE 6

.79 .S7 .38 .20 .01 .00 .02 .01 .03 .08

1st 10 autocorrelations from the residual series of Example 4
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TABLE 7

-1.65 91 =-

.036 ~ 2 -26 03 -.20 e4 * 14

'61
2

Mehdo(~mnsPrmte siae o xml
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.1 TABLE 8

=1.66 ;2 -. 92

B -. 92 2 =-.78 83- 66 ;4 *5

* MNaXimum Likelihood Parameter Estimates 
for Example4
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